
Also, we know from the theory of the dynamic absorber [2] that its eZliciency depends non- 

monotonically on the damping. 

Figure 5 shows the function T(k) for M = 0.2, e = 0.2, a = 5, s = 4.5, and c = 0.05, 
2, 3, and 4 (curves 1-4); this figure exhibits the major influence of the position of the 
resonator in the region ~ on the absorption of acoustic vibrations. The mechanism of this 
influence can be identified with the displacement of the field of acoustic disturbances ra- 
diated from the resonator relative to the normal mode of acoustic vibrations in the main 
region. 

In conclusion the author is grateful to V. A. Yudin for writing the program for the 
calculations. 
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INITIATION OF COHERENT MOTION IN TURBULENT COCURRENT FLOWS 

O. A. Likhachev UDC 532.517.4+532.526 

It has been established experimentally that organized motion is present in all turbulent 
shear flows. The presence of coherent motion in flows served as the basis for Townsend's 
creation [i, 2] of a turbulence model with a binary structure in which the undisturbed sur- 
rounding fluid is brought into the shear flow by coarse eddies which develop against a back- 
ground of small-scale turbulence. Townsend also developed the hypothesis of the universal 
similitude of free shear flows. In accordance with this hypothesis, at a sufficiently great 
distance from the source, motion is determined by the local scales of velocity and length. 
The scales depend on the type of flow and the external velocity and length scales. The aver- 
age motion, referred to the local scales, is described by universal functions which depend 
only on the method by which the motion comes about. Coarse eddies are in dynamic equilibrium 
with the average flow. This subsidiary condition determines the form and intensity of these 
eddies. Similitude has been proven to exist for plane shear layers [3-6], plane wakes [7-9], 
axisymmetric wakes [10-14], and axisymmetric shear layers and plane jets [15]. Here, char- 
acteristic local values of velocity and length are used as the scales. However, such scales 
depend to a significant extent on the experimental conditions (the presence of small harmonic 
perturbations [4-6, 8] and external turbulence [16] and, for cocurrent flows, the form of 
the body [7-14]) and other features of the experiment. The type of load and its character- 
istic frequency and scale are reflected in the coherent structures present in these flows. 
Some authors [6, 8] have attempted to describe external effects by using the theory of hy- 
drodynamic stability of inviscid flows. This theory can be used to analyze the response of 
a small harmonic perturbation. 

The memory of the initial conditions by the flow is a generally recognized factor as 
well, at least for the ranges which have been studied. However, it is not yet clear whether 
or not universal asymptotic similitude exists for each type of free shear flow. I~ is dif- 
ficult to explain the absence of such similitude in turbulent flows as being the result of 
intensive energy transfer between different scales of motion. Coherent large-scale struc- 
tures have been recorded in developed turbulent flows at very large distances from the 
source. The mechanism of their reproduction may be hydrodynamic instability of the average 
flow. If a turbulent shear flow is modeled as a flow with a certain effective viscosity vt, 
then the corresponding turbulent Reynolds numbers (Re t) will be finite and will determine 
whether the flow will be stable or unstable against longwave perturbations. At values of 
Re t less than the critical value, the flow will be stable, and degeneration of small-scale 
turbulence will result in a decrease in ~t and a consequent increase in Re t. The flow will 
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then become unstable and the large-scale motion will draw energy from the average flow and 
transmit it to smaller scales, thus increasing v t. The critical Re t will determine the limit- 
ing similarity regime toward which the given flow will strive. 

It will be shown below that Re t is an integral parameter which communicates information 
on the initial conditions to the local scales. We find the critical value of Re t for the flow 
in an axisymmetric far wake. We will also examine the flow behind a self-propelled body. 

i. Self-Similar Turbulent Wakes. We will refer to a wake as a change in the velocity 
U~ of a uniform flow incident on a stationary body. The motion of a continuum which occurs 
with passage by a body at a constant velocity U~ is usually referred to as a cocurrent flow. 
The Boussinesq hypothesis on eddy viscosity has been used with success in the phenomenological 
theory of turbulent free shear flows [I, 17]. The Reynolds stresses are modeled as viscous 
stresses with an effective viscosity ~t which is constant in each section. According to [i], 
an expedient method of determining the mean value of v t is to compare the observed distribu- 
tion of mean velocity with the value calculated from this model. A similarity solution is 
obtained by using the hypothesis of the similitude of turbulent pulsations resulting in a 
transfer of momentum. Thus, v t can be represented in the form vt(X) ~ bu 0, where u0(X) and 
b(X) are local velocity and length scales; X is the coordinate directed along the flow. The 
Reynolds number constructed from this viscosity and the local scales is constant over the 
entire region in which the flow is self-similar: 

Ne t = uob /v t ( -~  const). ( 1 . 1 )  

Since the eddying fluid transported by a turbulent flow is attributed the properties of an 
actual continuum but with a higher viscosity, the transverse dimension of the wake will grow 
as a result of the diffusion of vorticity at a rate determined by :vt: 

b - -  [ v t ( X -  Xo)/U~]I/~ ( 1 . 2 )  

(X 0 is the hypothetical beginning of the self-similar wake). One more condition is needed 
in order to find u0, b, and ~t- For impulsive, planar, and axisymmetric wakes, this is the 
conservation-of-momentum condition 

uob ~ const, Uo b2 ~ const. (1.3) 

Equations (1.1)-(1.3) lead to the well-known laws for the self-similar development of impul- 
sive wakes 

u o . ~  ( X - -  Xo) -1/~, b ~  ( X - -  Xo) ~/2, v t= const; 

u o N  ( X - - X o ) - ~ / 3 ,  b - ~  ( X - - X o ) V 3 ,  v t N  ( X - - X o ) - I / 3 .  

For non-impulsive wakes, the conservation integral was obtained in [18] with the condition 

~t = const 

Uo b3 - c o a s t ,  Uo ba = coast, ( 1 . 4 )  

This in turn leads us to an expression for the local scales of non-impulsive wakes 

u o ~  (X.-- Xo) -3/4, b ~  ( X - -  Xo)l/L v t ~  (X--  Xo)-1/2; 
U 0 ~-~ (X -- Xo) -4/5, b ~ (X -- Xo) 1/~, Y t  ~ (X -- Xo) -3/5. 

We represent the mean flow velocity in self-similar far wakes in the form 

U = U~[ t  --  s%(r)], V = s2U~zo(r) ( 1 . 5 )  

[~ = u0/U~(~I), r = y/b is the dimensionless transverse coordinate]. By inserting (1.5) into 
the averaged equations of motion and limiting ourselves to terms on the order of ~, we obtain 
the following for axisymmetric flows 

d~ dlnb 0% 8 0 [ 0%~ 
% 7-~ - -  s --u2- r -bT"r - X - X o T-~r [ r ~'r )" ( 1 . 6 )  

Here, we made use of Eq. (1.2). We use the continuity equation to find the following for the 

radial component of mean velocity 

d l n b r a % _  dln~ 8 o(r~o) ( 1 . 7 )  
dX Or dX ~ o =  ~ rar " 

In the case of an impulsive wake, the solution of Eqs. (1.6) and (1.7) has the form 

% = exp (--arZ), Xo = r % ( ~ / ( 3 R e O ,  ( 1 . 8 )  
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It is usually the case that a = In 2. Thus, as the transverse scale b we take distance along 
the flow axis over which the deficit of mean velocity is equal to half its value on the axis. 
We introduce the notation r 0 for this scale. Proceeding as before and limiting ourselves to 
terms of the order e, we write an equation which follows from the law of conservation of mo- 
mentum J and connects the local scales r0, u 0 with Eqs. (1.5), (1.8) for mean velocity: 

r~Uo = ln2 J n pU~" (1.9) 

Using (i.i) and (1.2) in combination with (1.9) [with the transverse scale in (1.1)-(1.2) 
being defined as r0] , we Obtain the following for the local scales of a self-similar impul- 
sive wake 

r o ~ C[(X -- Xo)/Re~]I/a, ~o/U~ = C [(X -- X0)/Ret] -2/3, (i. I0) 

where the constant C- [(J |n2)/(npU~)] 1/~ depends only on the drag of the body. The quantity 
Re t in (1.10) characterizes individual features of flows behind bodies with identical form 
drag; Re t can be found experimentally by means of (I.I0): 

Re t = ( X  -- Xo)uo/(roC~).  ( 1 . 1 1 )  

The i n v e r s e  Re~ 1 c o i n c i d e s  w i t h  t h e  q u a n t i t y  S o i n t r o d u c e d  in  [ 1 4 ] .  We u s e d  l o c a l  s c a l e s  of  
t y p e  ( 1 . 1 0 ) ,  which  a l l o w e d  us  t o  g e n e r a l i z e  a g r e a t  d e a l  o f  e m p i r i c a l  d a t a  on t h e  mean c h a r -  
a c t e r i s t i c s  o f  a x i s y m m e t r i c  i m p u l s i v e  wakes .  The e x p r e s s i o n s  found  e x p e r i m e n t a l l y  f o r  t h e  
l o c a l  s c a l e s  d i f f e r  f rom ( 1 . 1 0 )  by [ ~ / ( 4 I n 2 ) ]  1 /~ ,  i . e . ,  by a b o u t  4%. To i l l u s t r a t e ,  we 
w i l l  p r e s e n t  s e v e r a l  v a l u e s  o f  Re t c a l c u l a t e d  w i t h  ( 1 . 1 1 )  f rom p u b l i s h e d  e x p e r i m e n t a l  d a t a :  
a d i s k  [ 1 0 ] ,  Re t = 0 . 5 ;  a s p h e r e  [ 1 3 ] ,  0 . 8 ;  an e l l i p s o i d  [ i 1 ] ,  6 . 5 ;  a p o r o u s  d i s k  [ 1 3 ] ,  7 . 0 .  
The i n c r e a s e  i n  Re t r e f l e c t s  t h e  l e v e l  o f  t h e  R e y n o l d s  s t r e s s e s  in  t h e  wakes  b e h i n d  t h e  b o d i e s  
t a k e n  a s  e x a m p l e s .  

I n  t h e  c a s e  of  a n o n - i m p u l s i v e  wake ,  we w r i t e  t h e  s o l u t i o n  o f  Eqs .  ( 1 . 5 )  and ( 1 . 7 )  i n  
t h e  f o r m  

~0 =: (I - -  kr 2) exp (--kr2), ~0 = (r/5)(2 - -  kr 2) exp (--kr~). ( 1 . 1 2 )  

As t h e  t r a n s v e r s e  s c a l e  b ,  we t a k e  t h e  d i s t a n c e  o v e r  wh ich  t h e  v e l o c i t y  in  t h e  a x i a l  j e t  i s  
e q u a l  t o  h a l f  i t s  maximum v a l u e .  T h i s  c o r r e s p o n d s  t o  k = 0 . 3 1 4 9 2 .  We r e t a i n  r0 f o r  t h i s  
s c a l e ,  Hav ing  d e s i g n a t e d  t h e  c o n s t a n t  in  ( 1 . 4 )  as  N, we r e w r i t e  t h e  l o c a l  s c a l e s  o f  t h e  
n o n - i m p u l s i v e  a x i s y m m e t r i c  wake:  

ro = C I [ ( X  - -  Xo)/Re:t ]1/~, uo/U~ = C~[(X - -  Xo)/Ret] -~/5, ( 1 . 1 3 )  
C 1 = (N/U~)I /5 .  

The value of Re t is determined by Eq. (i.Ii). Several variants of a non-impulsive axisym- 
metric wake were realized in [14, 19-22]. It is difficult to obtain a completely non-impul- 
sive flow experimentally. At a certain distance from the source, an imbalance of the momen- 
tum flux leads to the formation of a flow of type (i.i0). Nevertheless, Eqs. (i.13)i are 
valid in an intermediate region where the character of the flow is of a distinctly non-impul- 
sive nature (see [14]). 

Introduction of the quantity Re t made it possible to generalize experimental data on the 
average flow. However, the fluctuation characteristics of turbulent flow in wakes cannot be 
described in the same similarity variables. In keeping with the hypothesis advanced as the 
basis of the present study, the dynamics of a wake is significantly influenced by large-scale 
perturbations. Due to hydrodynamic instability, the amplitude of these perturbations changes 
downstream in accordance with a law which differs from the similarity law characteristic of 
the average flow. The exact law of change in the amplitude and the form of the perturbations 
depends on their scale and Ret, as will be shown below. 

2. Formulation of the Problem of the Stability of Turbulent Wakes. The response of 
turbulent flows to a large-scale external wave disturbance can be studied on the basis of 
the linear theory of hydrodynamic stability of viscous flows [23]. The velocity field in the 
cylindrical coordinate system (X, R, ~ ) has the components (u, v, w). According to [23], 
the velocity and pressure fields are represented in the form u = U + u' +u �9 Along with the 
average flow U and turbulent pulsative motion u', this expression contains the regular wave 
motion u. The distribution of the mean velocity Of the two types of flows being examined is 
represented by Eqs. (1.5), (1.8), and (1.12). Figure 1 shows the longitudinal components of 
the mean velocities of these flows. The equations of motion and continuity for the wave mo- 
tion are written as 
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v ~ j  = o (2. I) 

(eij is the strain-rate tensor associated with the wave motion). We ignore molecular vis- 
cosity compared to eddy viscosity v t. By virtue of the presumed similarity of the average 
flow, we will also seek the perturbations in similarity form 

{(~' ~' ~)} { e U ~ [ u ( r ) ' v ( r ) ' w ( r ) ] l e x p ( ~ O )  ' ( 2 . 2 )  
= ~2ULq(r)/Ret ! 

, 0  where  O@/OX = a ~ + (e/Re 0 al(X); 0 @ ~  - -  m;  O@/Ot = _mo; r = R/ro;  ~o i s  t h e  a n g u l a r  f r e q u e n c y  
of the linear oscillations; m is the azimuthal wave number; s ~ = w~ is the longitudinal 
wave number of perturbations propagating with the phase velocity U~. The last relation is 
valid at e + 0, since the change in phase velocity cannot be greater than the deficit of ex- 
ternal velocity. The second term, containing the complex number a~, represents the 
correction for motion in the wake. The real part of ~ reflects the drift of the 

phase of the perturbations in a coordinate system moving with the velocity U~, i.e., in the 
wake. The imaginary part of a~ is connected with the change in the amplitude of the perturba- 
tions, which characterizes their stability or instability (depending on the sign). After we 
insert (2.2) into (2.1) and change over to the new variables (~, X, r, ~), we have a system of 
ordinary differential equations with coefficients dependent on the coordinate X. It was 
found in experimental studies that the wavelength of the most dan~ergus large-scale perturba- 
tions changes in proportion to the local length scale [24]. This means that 

(~o, a~)  = (a, a l ) /%,  (a, al) = const. ( 2 . 3 )  

For far wakes, ~ ~ i. Thus, we will limit ourselves to terms on the order of e in the re- 
sulting system. With allowance for (2.3) and the relation s ~ = m~ the terms on the order 
of O(g 2) form the system of equations 

~2u - -  Tru '  + iaq  - -  Ret~v  -- ( r u ' ) ' / r  = O, 

~ - -  Try'  - {  q' - [  v /r  ~ + i 2 m w / r  2 - -  ( r v ' ) ' / r  = O, ( 2 . 4 )  
2w - -  ~rw '  @ imq / r  -~ w ~  2 - -  i 2 m w / r  ~ - -  ( r w ' ) ' / r  = O, 

i a u  + (rtO'/r + i m w ~  : O, ~ : i (a l  - -  ~Ret%) + ~ + m ~/r~ --( t  --  ~)~ 

(~ = i/3 for an impulsive wake and T = i/5 for a non-impulsive wake, ~ = i). If we introduce 
US = --~0, c = --~l/(eRet), then at T = 0, ~ = 0. system (2.4) takes the form examined in [25]. 
The prime denotes a derivative with respect to r. The boundary conditions for the perturba- 
tion are given by the relations 

u, v~ W, q-+  0 at r--> oo, 

u(O) = q(o) = o,  m e  0, , ( ~  = w ~ )  : 0, m v~ t ,  v(0) + ~w(0) = 0, (2.5) 

The solution of the problem of the stability of a flow consists of finding eigenvalues a z and 
corresponding eigenfunctions (u, v, w, q) of boundary-value problem (2.4), (2.5). The eigen- 
value problem was solved numerically by the differential trial-run method, with joining of 
the different parts of the solution in the critical layer [26]. Certain difficulties are 
encountered when attempting to solve the equations for the correction factors, due to the 
presence of a singularity on the axis. Equations (2.4) have a regular singularity at r = 0. 
The solution of the system can be obtained in the neighborhood of this singularity in the 
form of a series in powers of r: 

180 



(v, w) = r~(ai + bit 2 + ...), i = 1, 2, ( 2 . 6 )  
(u, q) = rV-l(al + bir 2 @ ...), i = 3, 4. 

Inserting (2.6) itno (2.4) and collecting the terms with identical powers of r, we obtain 
the characteristic equation for ~ and recursion formulas that link the constants in expansion 
(2.6). The roots of the characteristic equation are equal to (m + I), (i - m), -(m + i), 
(m - i), with the first two being quadratic. We will write out three linearly independent 
solutions for m ~ 0 which are finite at r = 0: 

{--r TM, [ia/(m + l)/21r re+l, [a/(m + t)/21r re+l, 0}, 

{0, [m/(m + t)/4]r ~+1, [i(m + 2)/(m -~ t)/41r ~+1, r~}, ( 2 . 7 )  

{0, r ~-1, ir ~-1, 0}. 

E x p r e s s i o n s  ( 2 . 7 )  a r e  u s e d  t o  f i n d  t h e  c o r r e c t i o n  m a t r i x  and i t s  f i r s t  d e r i v a t i v e  a t  r = O. 
These values are needed to solve the equations for the correction factors. The order of 
system (2.4) may be reduced to four in the case m = 0. Using the form of the boundary con- 
ditions for r = 0, it is not hard to write two linearly independent solutions in the neigh- 
borhood of the axis. In numerical calculations, the condition of decay of the perturbations 
at infinity was replaced by the condition of attachment at a certain sufficiently great dis- 
tance from the axis R 0. Small ~ requires an increase in R0, since longwave perturbations 
are very sensitive to the conditions on the external boundary. This is illustrated in Fig. 
4, where the triangles show the calculation of the neutral curve with R 0 = 12. To keep the 
boundary conditions from affecting the results, the interval of integration was changed in 
accordance with the law R 0 = c0/~. It was found that at c o = 8 a further increase in R 0 with 
fixed ~ has no effect on the results of calculation of the eigenvalues. The equations for 
the correction factors were solved by the Runge-Kutta method with a constant step. We 
doubled the integration step in the neighborhood of the critical layer to improve the ac- 
curacy of the calculations. The numerical algorithm was checked against the data in [25]. 

3. Stability of an Impulsive Axisymmetric Wake. The azimuthal wave number changes 
discretely and is represented by a denumerable set of integers m = 0, i, 2, .... The spectrum 
for each m is also denumerable. Of particular interest are the spectral modes corresponding 
to the most dangerous perturbations for Re t from the range established experimentally with 
flows past bodies of different shapes (Ret[0.5-7.0], see above). The complexity of the dis- 
turbed motion increases with an increase in the azimuthal wave number. As a rule, more 
complex motion dies out more quickly. Thus, we examined only m = 0, i, 2. The principle 
underlying the approach being taken here allows us to find the most dangerous modes for fixed 
m, ~, and Re t. Curves i and 2 in Fig. 2 show eigenvalues for axisymmetric perturbations (m = 
0) in relation to ~. These values correspond to Re t = 2.0 and 5.0. At a = 0, the eigen- 
values of boundary-value problem (2.4), (2.5) are independent of Re t. Figure 3 shows eigen- 
functions of axisymmetric perturbations at Re t = 5.0 and ~ = 0.5. The axial component of 
the velocity of the perturbed motion has a maximum on the axis of the wake. The spiral 
perturbations (m = i) are the most dangerous throughout the range of Re t. Whereas perturba- 
tions with m = 0, 2 are absolutely stable, spiral perturbations have a region of parameter 
values for which such motion is unstable. The regions of the existence of stable and un- 
stable perturbations with m = I are shown in Fig. 4. The critical values of the parameters 
of the neutral perturbations Ret, = 6.78, ~, = 0.098, ~ir = 0.079. In accordance with the 
inviscid analysis [25], ~ § 0.99 at Re t § ~. Calculations performed in [25] for a viscous 
axisymmetric wake with a similar velocity deficit yielded the critical values of the para- 
meters of neutral perturbations Re, = 23.05, ~, = 0.41, ~Ir = 2.93. These studies were 
conducted with the assumption that the initial flow was parallel. As has been shown by our 
calculations, allowance for the effects connected with nonparallelism of the flow in the 
wake leads to appreciable expansion of the region of parameters for which the given flow is 
unstable. Figure 5 shows eigenvalues for spiral perturbations in relation to ~ for Re t = 1.0 
and 5.0 (curves i and 2), these values corresponding to the most dangerous spectral mode. 
With a decrease in Ret, the eigenvalues are given by the asymptotic expression ~l = i~2. 
Figure 6 shows the distributions of pressure and velocity in the case of spiral perturbations 
for Re t = 5.0 and ~ = 0.5. The maximum of axial velocity is located a certain distance from 
the axis of the wake. The sign of the helicity of the perturbations was obtained in every 
experiment from studying axisym~etric turbulent wakes (see [13], for example). The maximum 
degenerates as the wake develops, which is typical of the decay of spiral disturbances. This 
fact is consistent with the results of the present study, since Re t ~ Net, for most of the 
empirically investigated axisymmetric wakes. The generation and development of large-scale 
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spiral instabilities was observed in the visualization of a wake created by pulling a rope 
through the flow [14]. At small Re t, an increase in the azimuthal wave number greatly com- 
plicates the structure of the spectrum. For m = 2 and Re t § 0, the least stable spectral 
mode, having an inviscid asymptote, corresponds to the expression ~i = i(~2 + 1.72). 

It follows from the definition of e and Eqs. (i.Ii), (2.2), and (2.3) that the factor 
connected with a nonsimilar change in the amplitude of the perturbations has the form 

(u', v', ,v') ~ ~U~ (X - -  Xo) %.  ( 3 .1  ) 

In accordance with the above analysis, small values are obtained for the decrements of certain 
longwave perturbations for values of Re t from the range found experimentally in the case of 
flow past bodies of different shapes. This fact, together with (3.1), confirms the very 
slow growth of perturbations in impulsive axisymmetric wakes. 

4. Stability of a Non-Impulsive Wake. Figure 7 Shows regions of existence of stable 
and unstable spiral perturbations of the given flow in the plane (Ret, ~). Due to the pres- 
ence of the point of inflection and the effects of nonparallelism, the flow in the non-impul- 
sive turbulent wake is absolutely unstable against longwave perturbations with m = I. At 
Re t § 0, the eigenvalues are given by the asymptotic expression ~i = i( ~2 - 0.4). The in- 
crement retains the constant value ~i = -i0.4 along the x axis. As for the impulsive wake, 
perturbations with m = 0, 2 are absolutely stable. The distributions of the pressure and 
velocity of the perturbations are on the whole similar to those obtained for an impulsive 
wake. As was already noted, it was very complicated to study this type of flow experimentally 
due to the difficulty of exactly satisfying the condition of non-impulsiveness of the wake. 
The lack of reliable data makes it impossible to compare experimental and theoretical re- 
sults on the development of perturbations in flows of this type. 

5. Conclusions. The Boussinesq hypothesis on eddy viscosity and the hypothesis on the 
similarity of turbulent pulsations that exchange momentum make it possible to find the form 
of the local velocity and length scales. These scales contain an empirical parameter which 
determines their dependence on the initial conditions of formation of a wake. This parameter 
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is Re t. A cascade of large-scale instabilities can serve as a mechanism for the loss of 
information on initial conditions by a flow. At the same time, it is a well-established em- 
pirical fact that, for the distances that have been investigated, nearly all free shear flows 
have a "memory" of the initial conditions. Large coherent structures formed at the beginning 
of the flow change little in shape with motion downstream and are seen at great distances 
from the source. This conservatism of coherent structure can be attributed to their weak 
interaction with the average flow. In order to determine the response of a flow to a small 
external disturbance, we performed a linear analysis of the stability of axisymmetric tur- 
bulent wakes. The analysis showed that the amplitude of the perturbations changes in accor- 
dance with a power law. Along with the corresponding similarity part, the exponent contains 
a number which characterizes the growth or decay of the perturbations. It depends on Re t 
and has an absolute value on the order of or less than unity for the impulsive axis~nnmetric 
wakes investigated here. In accordance with this result, it can be concluded that the 
"memory" for the initial conditions is due to the weak interaction of large-scale perturba- 
tions with the average flow. The time of formation of universal similarity in cocurrent 
flows is determined by the characteristic time of development of large-scale perturbations. 
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EVOLUTION AND INTERACTION OF THREE-DIMENSIONAL VORTEX CLUSTERS 

G. A. Kuz'min UDC 532.517.4 

TURBULENT FLOW MODEL: ENSEMBLE OF SMALL VORTICES 

Hydrodynamic instabilities in turbulent flows lead to the formation of concentrated 
pockets of vorticity (clusters). Their evolution in time is governed by the nonlinear vor- 
ticity dynamics in the interior of the vortices and by their mutual interaction. 

The possibility of analyzing separately the internal and external degrees of freedom 
depends On the intermittency factor • = %/s (% is a characteristic length of the vortices, 
and s is the distance between them). If • § 0, the vortices interact only through their mo- 
menta, and the other degrees of freedom are insignificant [i, 2]. 

If • ~ 0, other multipole moments take part in the interaction of the vortices. In 
turn, their evolution is determined not only by the effect of the surroundings on each spe- 
cific vortex, but also by the nonlinear dynamics of all internal degrees of freedom, the 
set of which is not exhausted by the multipole moments [2, 3]. 

The influence of the vortex surroundings on its internal degrees of freedom for • ~ 1 is 
similar to the influence of a certain nonuniform external velocity field. Consequently, the 
total system of equations for the ensemble of small vortex clusters is partitioned into sub- 
systems. Each subsystem describes a particular vortex in the external field induced by the 
other vortices. The objective of the present study is to derive such a subsystem of equa- 
tions and to analyze its solutions. 

VORTEX CLUSTER IN AN EXTERNAL FIELD IN AN INFINITE COMPRESSIBLE FLUID 

The vorticity field obeys the equation 

a~/at - -  v A ~  = (mV)U - -  ( u v ) ~ .  ( 1 )  

Galerkin's method is used for the approximate solution of Eq. (i). The choice of basis for 
the expansion is based on the following considerations. 

Vortex clusters in turbulent flows comprise certain irregular diffuse formations. If 
the Reynolds number Re determined from the cluster parameters is small, the evolution of a 
vortex depends mainly on the viscosity. Consequently, a natural basis for the expansion is 
the set of solutions of the linearized equation (I). 

Turbulent fluctuations having a broad spectrum of space scales develop inside the vor- 
tices for large Re. The detailed description of these fluctuations would require the inclusion 
of a large number of terms in the expansion, regardless of the system of functions chosen as 
the basis. Large-scale vortex deformations, which influence the interaction between the 
vortices, are the most important in regard to the present study. Small-scale fluctuations 
act as a reservoir, from which energy is drained. Their influence can be taken into account 
by means of an effective viscosity coefficient Vef" The number Reef formulated using the 
effective viscostiy is no longer as large as Re, and the solution of the linearized equation 
(I) with v replaced by ~ef can be adopted as the basis of the expansion. 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
2, pp. 44-48, March-April, 1991. Original article submitted March 9, 1989; revision submitted 

October 2, 1989. 

184 0021-8944/91/3202-0184512.50 �9 1991 Plenum Publishing Corporation 


